(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cons(mark(X1), X2) →+ mark(cons(X1, X2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)